# Language and Vision at UniTN

Raffaella Bernardi University of Trento



# LaVi @ UniTn

## Learning the meaning of Quantifiers from Language, Vision (and Audio): <u>https://quantit-clic.github.io/</u>



none almost none few the smaller part some many most almost all all



Sandro Pezzelle (now post-doc at UvA)

## Diagnostic analysis of LV models: <a href="https://foilunitn.github.io/">https://foilunitn.github.io/</a>

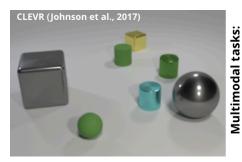


People riding bikes down the road approaching a dog



Ravi Shekhar (now post-doc at QMUL)

## Transfer Learning in (I)VQA: https://continual-vista.github.io/



Wh-q:  $y \in \{$ metal, blue, sphere,...,large $\}$ Q: What is the material of the largeobject that is the same shape as the tinyyellow thing? A: metalYes/No-q:  $y \in \{$ Yes, No $\}$ Q: Does the cyan ball have the samematerial as the large object behind thegreen ball? A: Yes



Claudio Greco (CIMeC)

## Current Focus: Dialogues between Speakers with different background

## Visually Grounded Talking Agents

(in collaboration with UvA: <u>https://vista-unitn-uva.github.io/</u>) Current Focus: Multimodal Pragmatic Speaker

# Computational Models of Language Cognitive and Language Evolution





Stella Frank (CIMeC)

## LaVi@ UniTN on going collaborations

## Be Different to Be Better:



If I am feeling alone

🔲 I cry I join the group In collaboration with Uva



https://sites.google.com/view/bd2bb/home

## **Visually Grounded Spatial Reasoning**



is it the bus on the left? No





is it the boat next to a car? No is it one of the two in the back? Yes

### In collaboration with Cordoba University

### https://github.com/albertotestoni/unitn unc splu2020

# **Visual Dialogue Games**

### **GuessWhat?!**

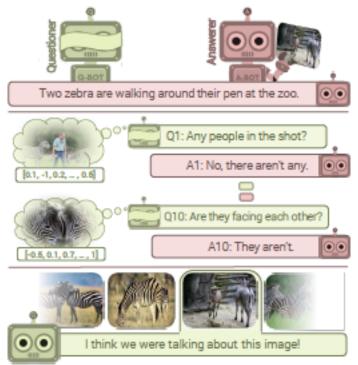


| <u>Questioner</u>                   | <b>Oracle</b> |
|-------------------------------------|---------------|
| Is it a vase?                       | Yes           |
| Is it partially visible?            | No            |
| Is it in the left corner?           | No            |
| Is it the turquoise and purple one? | Yes           |

De Vries et al CVPR 2017

Strub et al IJCAI 2017

#### GuessWhich



### Das et al IEEE 2017

Das et al ICCV 2017

### Murahari et al EMNLP 2019 5

# Visually Grounded Talking Agents

## GuessWhat?!



Is it the turquoise and purple one?

De Vries et al CVPR 2017

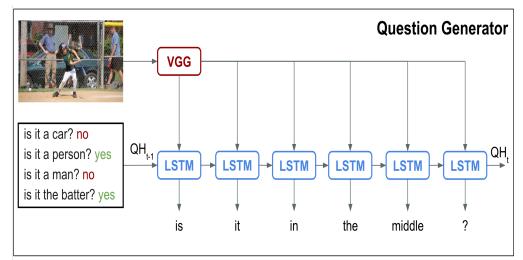
Yes

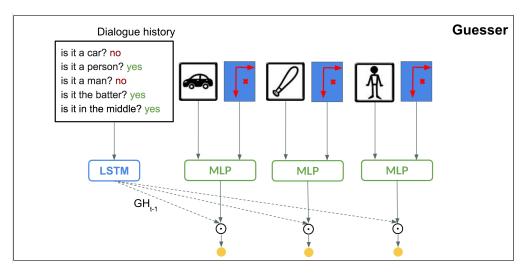
Strub et al IJCAI 2017 6

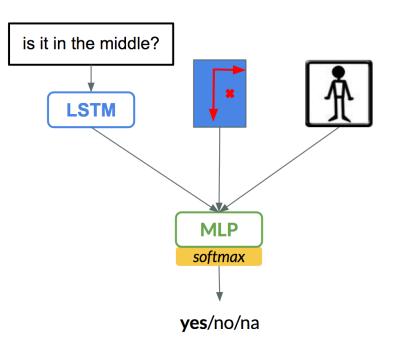
## Guess What?! baseline

Questioner



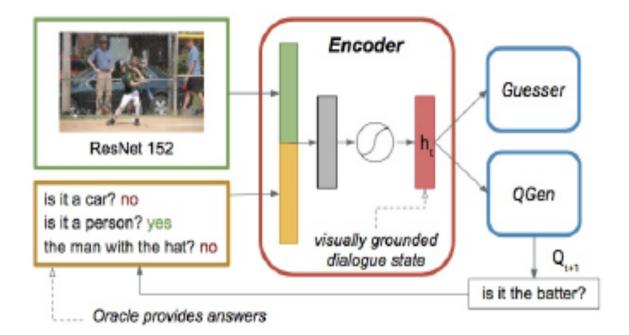






de Vries et al 2017

## Grounded Dialogue State Encoder

















Raffaella Bernardi

Elia Bruni

Raquel Fernández

Ravi Shekhar

Aashish Venkatesh

Tim Baumgärtner

Barbara Plank er

COLING 2018 NAACL 2019 Clic-it 2019

https://vista-unitn-uva.github.io<sup>8</sup>

## Learning Approachs

- Supervised Learning (SL) (Baseline *de Vries et al 2017,* Our-GDSE-SL): Trained on human data
- Reinforcement Learning (RL) (SoA Strub et al. 2017): Trained on generated data
- **Cooperative Learning** (CL) (Our-GDSE-CL): Trained on generated data and human data

## Results: GuessWhat?!

|                                | 5Q          | 8Q                  |
|--------------------------------|-------------|---------------------|
| Baseline (de Vries et al 2017) | 41.2        | 40.7                |
| GDSE-SL (our)                  | 47.8        | 49.7                |
| GDSE-CL (our)                  | 53.7(∓0.83) | <b>58.4</b> (∓0.12) |

 Our best is with 10Q: 60.8(∓0.51)

## Results: GuessWhat?!

|                                | 5Q                  | 8Q                  |
|--------------------------------|---------------------|---------------------|
| Baseline (de Vries et al 2017) | 41.2                | 40.7                |
| GDSE-SL (our)                  | 47.8                | 49.7                |
| GDSE-CL (our)                  | 53.7(∓0.83)         | <b>58.4</b> (∓0.12) |
| RL (Strub et al. (2017))       | <b>56.2</b> (∓0.24) | 56.3(∓0.05)         |

Our best result is with 10Q:  $60.8(\pm 0.51)$ 

## Beyond Task Success

| Model               | 50   | 8Q                                         |          | Lexical<br>diversity                                    | Question<br>diversity                                 | % Games wit<br>repeated Q's                    |
|---------------------|------|--------------------------------------------|----------|---------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|
| Baseline<br>GDSE-SL | 41.2 | 40.7<br>49.7<br>58.4 (±.12)<br>56.3 (±.05) | SL<br>CL | 0.030<br>0.101<br>0.115 (±.02)<br>0.073 (±.00)<br>0.731 | 1.60<br>13.61<br>14.15 (±3.0)<br>1.04 (±.03)<br>47.89 | 93.50<br>55.80<br>52.19 (±4.7)<br>96.47 (±.04) |

| Carlos and          | Humans                                         | [success]    | GDSE-CL                                | [success]     | RL [fa            | ilure] |
|---------------------|------------------------------------------------|--------------|----------------------------------------|---------------|-------------------|--------|
| State of the second | <ol> <li>does it have cereal on it?</li> </ol> |              | 1. is it a donut?                      | yes           | 1. is it food?    | yes    |
|                     | 2. does it have pink frosting?                 | no           | 2. is it on the left?                  | no            | 2. is it a donu   | t? yes |
|                     | 3. does it have cookies?                       | no           | 3. is it on the right?                 | yes           | 3. is it in left? | no?    |
| 0.000               | 4. is it a donut?                              | -            | 4. is it the whole donut?              | yes           | 4. is it in top?  | yes    |
| A martine           | <ol><li>does it have maple frosting</li></ol>  | ? <b>n</b> o | 5. does it have pink icing?            | no            | 5. is it in top?  | yes    |
| 1995                | 6. is there candy?                             |              | 6. is it touching the donut with the s | prinkles? yes | 6. is it in top?  | yes    |
|                     | _                                              |              | 7. does it have chocolate icing?       | no            | 7. is it in top?  | yes    |
|                     | 8. is it dark brown?                           | no           | 8. is it the third donut?              | yes           | 8. is it top?     | yes    |

## **Question Type**

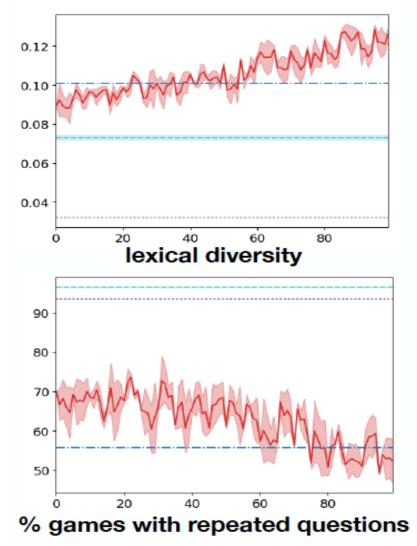
| Question type  | BL           | SL    | CL    | RL    | н     |
|----------------|--------------|-------|-------|-------|-------|
| ENTITY         | 49.00        | 48.07 | 46.51 | 23.99 | 38.11 |
| SUPER-CAT      | 19.6         | 12.38 | 12.58 | 14.00 | 14.51 |
| OBJECT         | 29.4         | 35.70 | 33.92 | 9.99  | 23.61 |
| ATTRIBUTE      | <b>49.88</b> | 46.64 | 47.60 | 75.52 | 53.29 |
| COLOR          | 2.75         | 13.00 | 12.51 | 0.12  | 15.50 |
| SHAPE          | 0.00         | 0.01  | 0.02  | 0.003 | 0.30  |
| SIZE           | 0.02         | 0.33  | 0.39  | 0.024 | 1.38  |
| TEXTURE        | 0.00         | 0.13  | 0.15  | 0.013 | 0.89  |
| LOCATION       | 47.25        | 37.09 | 38.54 | 74.80 | 40.00 |
| ACTION         | 1.34         | 7.97  | 7.60  | 0.66  | 7.59  |
| Not classified | 1.12         | 5.28  | 5.90  | 0.49  | 8.60  |
| KL (wrt human) | ) 0.953      | 0.042 | 0.038 | 0.396 | 0.0   |

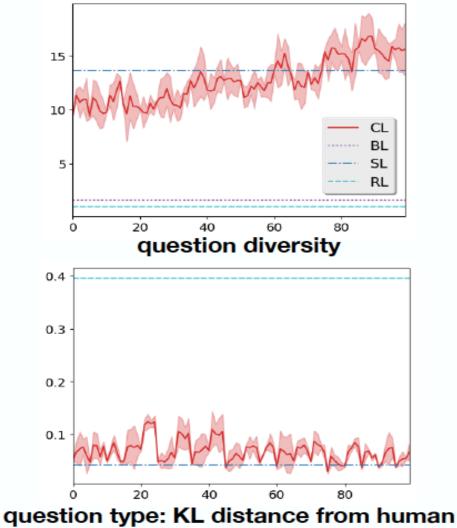
# **Dialogue Strategy**

## Question Type Shift after getting "YES" answer

|                     | BL    | SL    | CL    | RL    | Human |
|---------------------|-------|-------|-------|-------|-------|
| SUPER-CAT → OBJ/ATT | 89.05 | 92.61 | 89.75 | 95.63 | 89.56 |
| OBJECT → ATTRIBUTE  | 67.87 | 60.92 | 65.06 | 99.46 | 88.70 |

# Evolution of linguistic factors over 100 training epochs





15

# Summing up

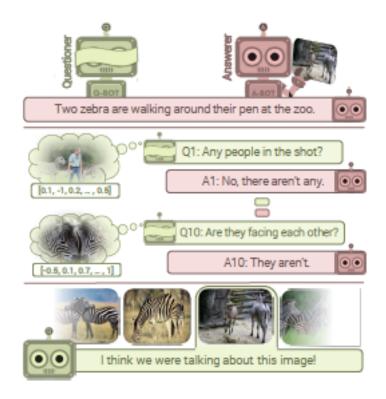
Take-home message:

➔Don't stop at the task accuracy, quality of the dialogue is also important.

Next:

➔ how flexible is our architecture?

## GuessWhich Game



Das et al IEEE 2017 Das et al ICCV 2017 Murahari et al EMNLP 2019

## The Dialogues



A room with a couch, tv monitor and a table

| no, it is small screen of some sort |
|-------------------------------------|
| yes, it does                        |
| no people                           |
| no                                  |
| brown                               |
| no, there aren't any                |
| no                                  |
| ? no it doesn't                     |
| white                               |
| not really                          |
|                                     |

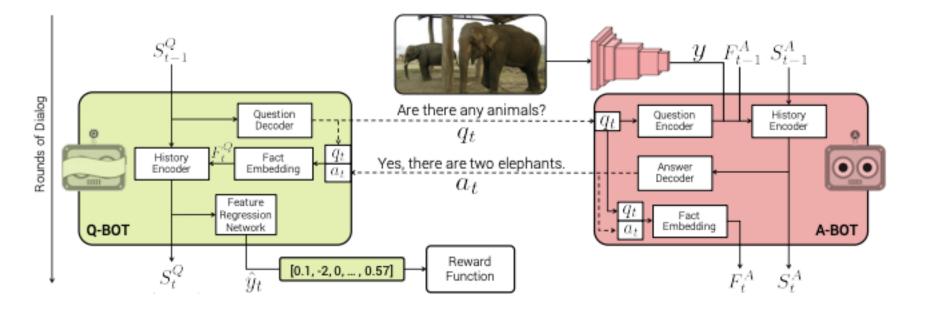
## The Dialogues



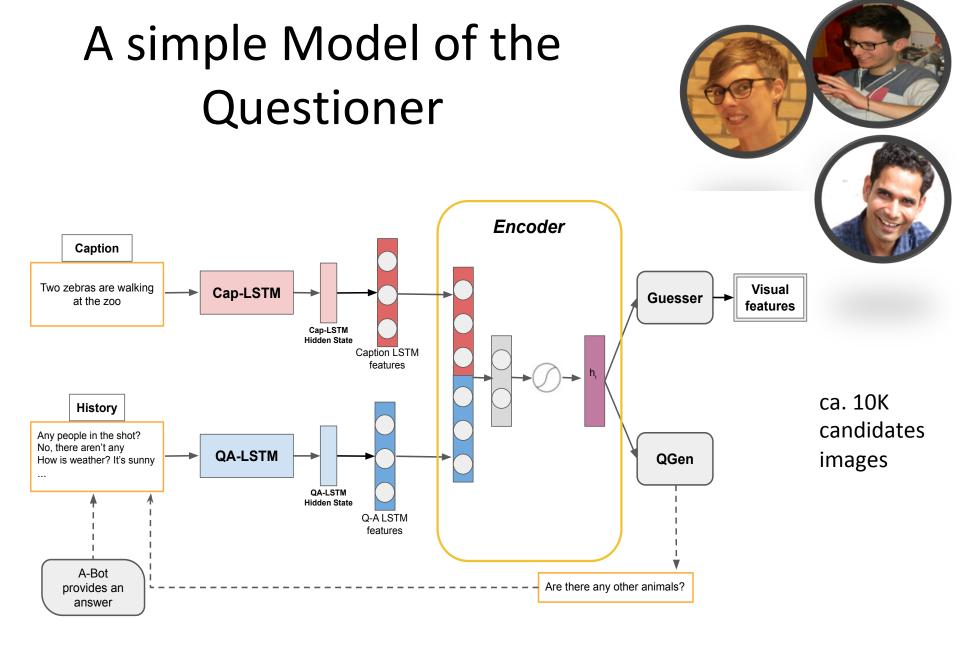
A room with a couch, tv monitor and a table

| no, it is small screen of some sort |
|-------------------------------------|
| yes, it does                        |
| no people                           |
| no                                  |
| brown                               |
| no, there aren't any                |
| no                                  |
| ? no it doesn't                     |
| white                               |
| not really                          |
|                                     |

## Q-Bot and A-BoT



20



SemDial 2019

ReCap: it re-reads the caption at each turn

## Results

Mean Percentile Rank (MPR): 95% means that, in average, the target image is closer to the one chosen by the model more than the 95% of the candidate images.

With 9628 candidates, 95% MPR corresponds to a Mean Rank of 481.4 A difference of +/-1% MPR corresponds to -/+100 mean rank.

| Chance         50.00         Guesser + QGen           Qbot-SL         91.19         ReCap | 94.84 |
|-------------------------------------------------------------------------------------------|-------|
| Obot-SL 91.19 ReCan                                                                       |       |
| Recap                                                                                     | 95.65 |
| Qbot-RL 94.19 Guesser caption                                                             | 49.99 |
| AQM+/indA 94.64 Guesser dialogue                                                          | 49.99 |
| AQM+/depA 97.45 Guesser caption +dialogue                                                 | 94.92 |
| ReCap 95.54 Guesser-USE caption                                                           | 96.90 |

The dialogues work as a language incubator. They don't provide info to identify the image

## The Role of the Dialogue

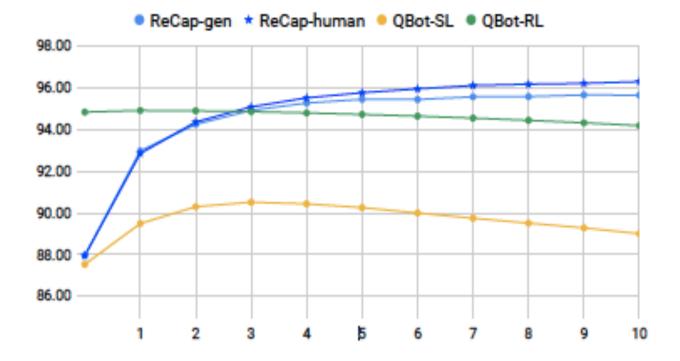
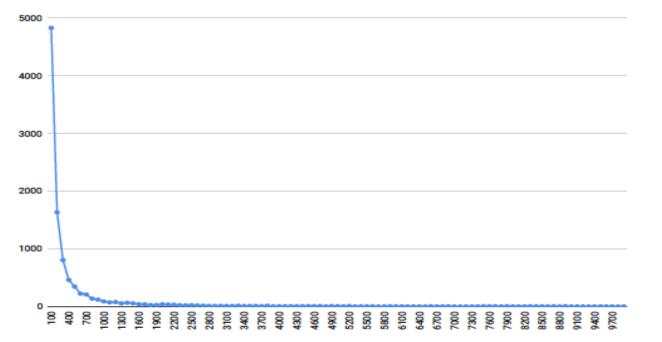
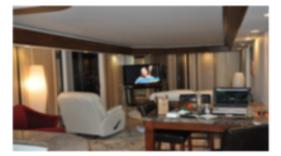


Figure 3: MPR distribution per dialogue round: comparison of ReCap model tested on human dialogues vs. ReCap and QBot models tested on generated dialogues.

## Analysis of the Test Set



Distribution of rank assigned to the target image by ReCap



A room with a couch, tv monitor and a table.



This is a close up picture of a <u>roosters</u>. neck

# Summing up

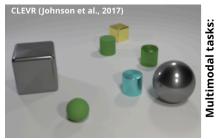
- The metric used is too coarse
- The dataset too skewed

# What we have learned so far about Visually Grounded Talking Agents

- They are interesting and challenging.
- There are good "baselines" available.
- Advantage of using cooperative learning within the model's modules.
- It might be good to use pre-trained language embedding.
- Let's not forget to evaluate the dialogues.

## **Continual Learning**

# Continual Learning in VQA: <u>https://continual-vista.github.io/</u>



Wh-q: y ∈ {metal, blue, sphere,...,large}
Q: What is the material of the large
object that is the same shape as the tiny
yellow thing? A: metal
Yes/No-q: y ∈ {Yes, No}

**Q:** Does the cyan ball have the same material as the large object behind the green ball? **A:** Yes



Claudio Greco (CIMeC)

# Modeling Human Learning

- *Transfer learning*: the situation where what has been learned in one setting is exploited to improve generalization in another setting (Holyoak and Thagard, 1997)
- Lifelong Learning systems should be able to learn from a stream of tasks (Thrun and Mitchell, 1995)
- *Curriculum Learning* a learning strategy which starts from easy training examples and gradually handles harder ones (Elman 1993)

# Our Work on VQA



We ask whether MM models:

- benefit from learning question types of incremental difficulty
- 2. forget how to answer question types previously learned

## Learning to answer questions

Moradlou and Ginzburg 2018: <u>Children learn to answer Wh-Q before learning to answer polar questions</u>

Wh answered by child:

- a. MOT: what's that? CHI: yyy dog. MOT: that's a little dog.
- b. MOT: where'd [: where did] it go? CHI: down. MOT: down.

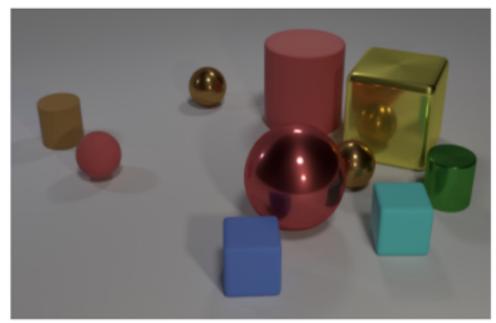
Polar not answered:

MOT: who's that? is that the doctor?

Polar questions answered were request polars: MOT: you want some rice? Child: (reaches out with bowl)

"the answer that can be provided to such questions in "training sessions" between parent and child is <u>easier to ground perceptually</u> than the abstract entities expressed by propositional answers required for polar questions."

## A diagnostic Dataset for VQA models



**attribute**, counting, comparison, spatial relationships, logical operations

**attribute**  $q \rightarrow Wh$  (color, shape, material and size)

comparison q  $\rightarrow$  Y/N

Q: Are there an equal number of large things and metal spheres?Q: What size is the cylinder that is left of the brown metal thing that is left of the big sphere?

Q: There is a sphere with the same size as the metal cube; is it made of the same material as the small red sphere?

Q: How many objects are either small cylinders or red things?

Johnson et al 2017

## Experiments



- 1. Does the model benefit from learning Y/N-Q after having learned Wh-Q?
- 2. Does the model forget Wh-Q after having learned Y/N-Q?
- 3. What if the order of the two tasks is reversed?

### Task Wh-Q

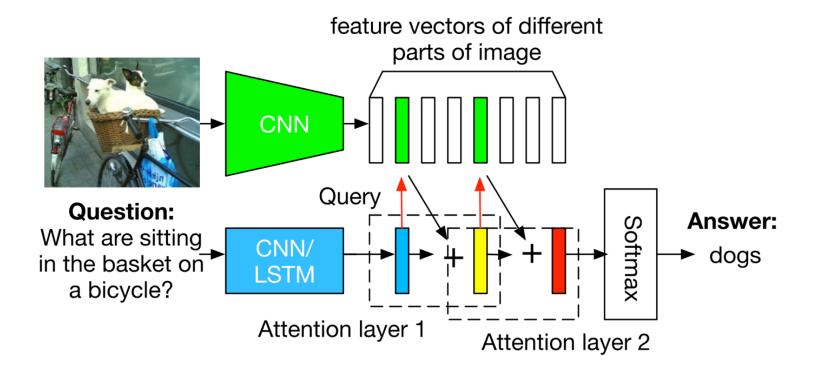
cylinder that is left to the yellow cube? A: Large

### Task Y/N-Q

**Q**: What size is the **Q**: Does the red bal have the same material as the large yellow cube? A: Yes

equal # datapoint per task

## Model: Stacked Attention Network

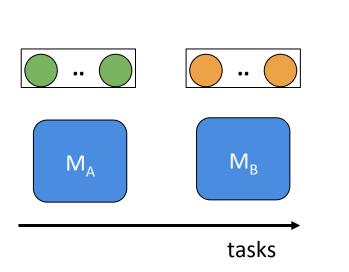


Yang et al. 2015

Wh-Q easier than Y/N-Q

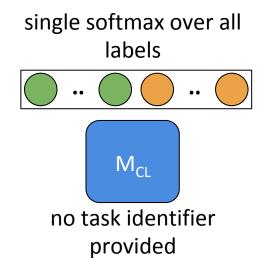
|                    | Wh-Q | Y/N Q |
|--------------------|------|-------|
| Random<br>baseline | 0.09 | 0.50  |
| LSTM-CNN-SA        | 0.81 | 0.52  |

## **Training Setup:**



**Training time** 

### **Testing time**



## **Training Methods**

**Naïve**: trained on Task A and then *fine-tuned* on Task B

**Cumulative**: trained on the training sets of *both* tasks

**Continual Learning** methods

|             | Wh-Q | Y/N Q |
|-------------|------|-------|
| LSTM-CNN-SA | 0.81 | 0.52  |

Naïve: trained on Task A, then *finetuned* on Task B

## Cumulative: trained on the training sets of *both* tasks

| Wh  Y/N               |      |      |  |
|-----------------------|------|------|--|
|                       | Wh   | Y/N  |  |
| Random<br>(both task) | 0.04 | 0.25 |  |
| Naïve                 | 0.00 | 0.61 |  |
| Cumulative            | 0.81 | 0.74 |  |

| Y/N →Wh               |      |      |  |
|-----------------------|------|------|--|
|                       | Y/N  | Wh   |  |
| Random<br>(both task) | 0.25 | 0.4  |  |
| Naïve                 | 0.00 | 0.81 |  |
| Cumulative            | 0.74 | 0.81 |  |

- The model improves on Y/N -Q if trained first/ together with Wh-Q
- The model forgets about Wh-Q after having learned Y/N-Q

Vs.

The model does not improve on Wh-Q after having learned Y/N-Q

The model forgets Y/N-Q after having learned Wh-Q

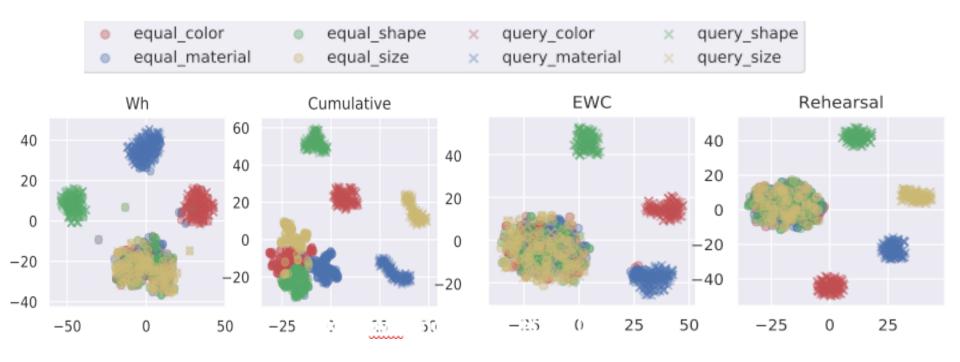
Note: training on both types of questions together improves Y/N

# Continual Learning training methods

- Elastic Weight Consolidation (EWC), (Kirkpatrick et al 2017): has a parameter that should help the model to reduce error for both tasks.
- Rehearsal (Robins 1995): trained on Task A, then fine-tuned through batches taken from a dataset of Task B and rehearsed on small number of examples from Task A.

# Analysis

Analysis of the neuron activations on the penultimate hidden layer



Task A: Wh and Task B: Y/N

# Conclusion

1. Do VQA models benefit from learning question types of incremental difficulty?

2. Do they forget how to answer question types previously learned?



These results call for studies on how it is possible to enhance visually-grounded models with continual learning methods

→ See T. L. Hayes et al in arXiv

#### They Are Not All Alike: Answering Different Spatial Questions Requires Different Grounding Strategies

Alberto Testoni<sup>1</sup>, Claudio Greco<sup>1</sup>, Tobias Bianchi<sup>3</sup>, Mauricio Mazuecos<sup>2</sup>, Agata Marcante<sup>4</sup>, Luciana Benotti<sup>2</sup>, Raffaella Bernardi<sup>1</sup>

<sup>1</sup> University of Trento, Italy
 <sup>2</sup> Universidad de Córdoba, Conicet Argentina
 <sup>3</sup> ISAE-Supaero, France
 <sup>4</sup> Université de Lorraine, France

Third International Workshop on Spatial Language Understanding, SpLU 2020

# **Spatial Reasoning**

Do VQA models apply different strategies when answering different types of spatial questions?

Does the attention of the models differ when answering different types of questions?

#### **Baseline Oracle Accuracy per Question Type**

|            | Frequenc<br>y (%) | Accuracy<br>(%) |
|------------|-------------------|-----------------|
| Entity     | 44.38             | 93.37           |
| Spatial    | 33.73             | 67.30           |
| Color      | 8.07              | 61.64           |
| Action     | 3.46              | 64.32           |
| Size       | 0.60              | 60.41           |
| Texture    | 0.61              | 69.92           |
| Shape      | 0.19              | 68.44           |
| Not        |                   |                 |
| classified | 8.96              | 75.02           |
| Total      | 100               | 75.94           |

Attribute Questions

Q-classification scheme from Shekhar R. et al., 2019. Beyond task success: A closer look at jointly learning to see, ask, and GuessWhat. In Proceedings of NAACL 2019

# Experiment 1 - Accuracy per Question Type

|                   | LSTM (%) | V-LSTM (%) | LXMERT-S<br>(%) | LXMERT (%) |
|-------------------|----------|------------|-----------------|------------|
| Entity            | 93.37    | 83.24      | 88.64           | 91.09      |
| Spatial           | 67.30    | 66.40      | 71.31           | 77.00      |
| Color             | 61.64    | 68.06      | 70.51           | 76.42      |
| Action            | 64.32    | 65.44      | 70.23           | 77.16      |
| Size              | 60.41    | 62.76      | 67.23           | 75.44      |
| Texture           | 69.92    | 66.15      | 71.92           | 77.47      |
| Shape             | 68.44    | 64.12      | 70.76           | 74.42      |
| Not<br>classified | 75.02    | 70.45      | 74.94           | 82.18      |
| Total             | 75.94    | 72.70      | 77.41           | 82.21      |

Better than LSTM

Worse than LSTM

# **Spatial Question Classification**

| Manual observations of patterns:<br>- Relational questions: PP NP (PRO/ENTITY)<br>- Absolute questions: location word |            | Freq<br>. % | Example              | _  |
|-----------------------------------------------------------------------------------------------------------------------|------------|-------------|----------------------|----|
| - Group questions: number (group/order)                                                                               | Relational | 31.9        | •                    |    |
| Automatic classification:<br>by identifying nouns, prepositions, and<br>numbers using PoS Stanza (Qui et al           |            |             | the <b>PC</b> ?      |    |
|                                                                                                                       | Absolute   | 31.8        |                      |    |
| 2020)                                                                                                                 |            |             | left?                |    |
|                                                                                                                       | Group      | 17.3        | 0                    |    |
|                                                                                                                       |            |             | women?               |    |
|                                                                                                                       | Other      | 19.0        | Can you sleep on it? | 11 |

# Experiment 2 – Accuracy on Spatial Questions

|            | LSTM | V-LSTM | LXMERT-S | LXMERT |
|------------|------|--------|----------|--------|
| Absolute   | 76.4 | 75.2   | 80.5     | 83.4   |
| Relational | 67.1 | 63.5   | 69.6     | 77.2   |
| Group      | 63.3 | 62.8   | 68.4     | 71.6   |

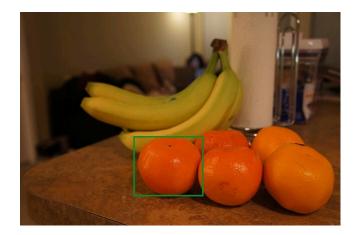


Worse than LSTM

Better than LSTM

# Error Analysis: the Role of the Dialogue History

Manual error analysis of 20% of LXMERT errors on spatial questions. For absolute and group questions, ~50% of errors are related to missing dialogue history.



| 1. Is it a fruit?       | Yes |
|-------------------------|-----|
| 2. Is it an orange?     | Yes |
| 3. Is it on our right?  | No  |
| 4. In the middle?       | No  |
| 5. The last single one? | Yes |

#### **LXMERT Attention Analysis**

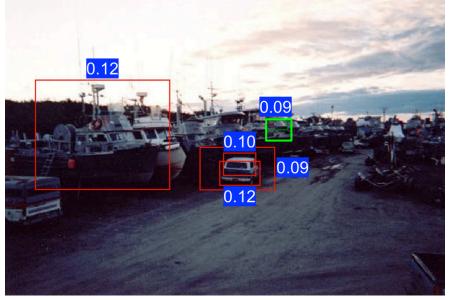
Is it the bus on the left?



**Absolute Question** 

### **LXMERT Attention Analysis**

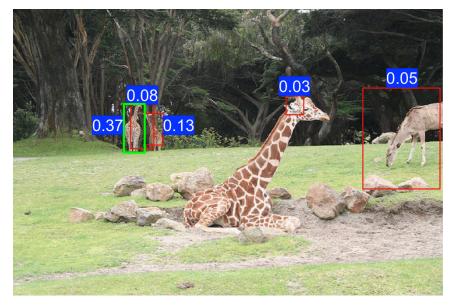
Is it the boat next to a car?



**Relational Question** 

### **LXMERT Attention Analysis**

Is it one of the two in the back?



**Group Question** 

# Summary of Contributions and Conclusion

- We adapted LXMERT to play the role of the Oracle of the GuessWhat?! Game, obtaining an overall accuracy of 82.21% (+6.27% with respect to the usual baseline).
- LXMERT improves over the baseline also on spatial questions (+9.70%), but they remain a large source of errors also for this model with 77.00% accuracy.
- We propose a new classification method for spatial questions. The fine-grained evaluation shows that the hardest spatial questions are the relational and group ones.
- Our qualitative analysis shows that LXMERT's attention shows different patterns for absolute and relational questions as expected. Moreover, we found that some spatial questions need the dialogue history to be interpreted correctly.

# (Internship) Projects

- Multimodal Spatial Reasoning Dota
- Ensemble Models for GuessWhat?! Daniel

# Be Different to Be Better



If I am feeling alone

I cry
I join the group
...

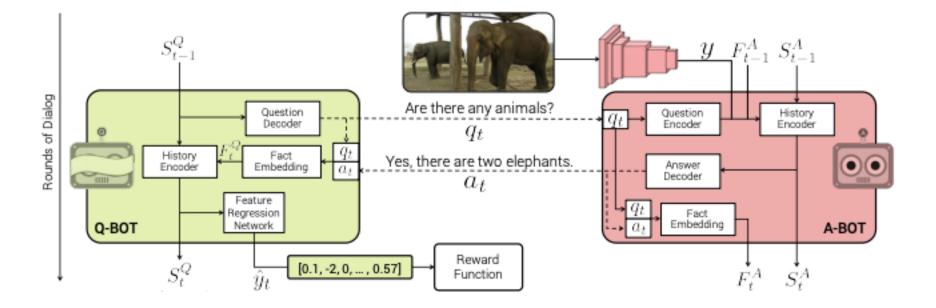
We have collected the data and cleaned them.

We are building the data to train and evaluate the models on the task.

We will need to adjust baselines to be trained and evaluated.

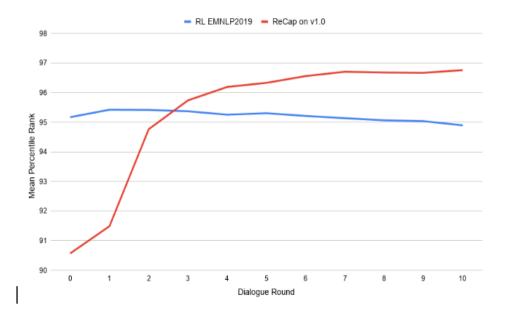


## But "new" model.. Diverse Q-BOT



**Diverse Q-Bot** (EMNLP 2019): receives a penality when it asks a question similar to the one asked in the previous turn

#### Re-Cap vs. Diverse-QBot



Diverse Q-Bot: 94.8 ReCap: 96.76

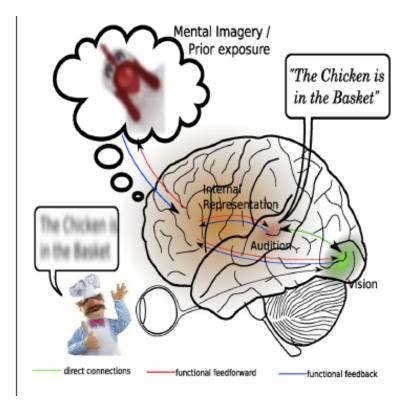
Training: 120K (VisDial 1) Candidate images: 2K

|       | Novel<br>questions ↑ |      | Unique questions<br>during dialogue ↑ | Mutual<br>overlap ↓ | Games with<br>repeated Qs ↓ |
|-------|----------------------|------|---------------------------------------|---------------------|-----------------------------|
| EMNLF | 429                  | 376  | 8.22                                  | 0.41                | 81.17%                      |
| ReCap | 1319                 | 1250 | 8.80                                  | 0.27                | 62.74%                      |

↑: higher is better

↓: lower is better

#### Mental Imagery module Prior exposure



#### Learning Quantifiers from audio-visual inputs









Audio-visual inputs aligned at the individual level

Testoni, Pezzelle, Bernardi CMCL 2019

### Imagining Vision from the Auditory Input

